Author Affiliations
Abstract
1 Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology 1037 Luoyu Rd. Wuhan 430074, P. R. China
2 National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research Huazhong Agricultural University Wuhan 430070, P. R. China
3 College of Engineering Huazhong Agricultural University Wuhan 430070, P. R. China
4 MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River Huazhong Agricultural University Wuhan 430070, P. R. China
For many tiller crops, the plant architecture (PA), including the plant fresh weight, plant height, number of tillers, tiller angle and stem diameter, significantly affects the grain yield. In this study, we propose a method based on volumetric reconstruction for high-throughput three-dimensional (3D) wheat PA studies. The proposed methodology involves plant volumetric reconstruction from multiple images, plant model processing and phenotypic parameter estimation and analysis. This study was performed on 80 Triticum aestivum plants, and the results were analyzed. Comparing the automated measurements with manual measurements, the mean absolute percentage error (MAPE) in the plant height and the plant fresh weight was 2.71% (1.08 cm with an average plant height of 40.07 cm) and 10.06% (1.41 g with an average plant fresh weight of 14.06 g), respectively. The root mean square error (RMSE) was 1.37 cm and 1.79 g for the plant height and plant fresh weight, respectively. The correlation coefficients were 0.95 and 0.96 for the plant height and plant fresh weight, respectively. Additionally, the proposed methodology, including plant reconstruction, model processing and trait extraction, required only approximately 20 s on average per plant using parallel computing on a graphics processing unit (GPU), demonstrating that the methodology would be valuable for a high-throughput phenotyping platform.
Three-dimensional volumetric reconstruction plant architecture graphics processing unit high-throughput 
Journal of Innovative Optical Health Sciences
2016, 9(5): 1650037
Author Affiliations
Abstract
1 Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology 1037 Luoyu Rd., Wuhan 430074, P. R. China
2 National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research Huazhong Agricultural University Wuhan 430070, P. R. China
3 College of Engineering Huazhong Agricultural University Wuhan 430070, P. R. China
4 MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River College of Plant Science and Technology Huazhong Agricultural University Wuhan 430070, P. R. China
Total green leaf area (GLA) is an important trait for agronomic studies. However, existing methods for estimating the GLA of individual rice plants are destructive and labor-intensive. A nondestructive method for estimating the total GLA of individual rice plants based on multiangle color images is presented. Using projected areas of the plant in images, linear, quadratic, exponential and power regression models for estimating total GLA were evaluated. Tests demonstrated that the side-view projected area had a stronger relationship with the actual total leaf area than the top-projected area. And power models fit better than other models. In addition, the use of multiple side-view images was an efficient method for reducing the estimation error. The inclusion of the top-view projected area as a second predictor provided only a slight improvement of the total leaf area estimation. When the projected areas from multi-angle images were used, the estimated leaf area (ELA) using the power model and the actual leaf area had a high correlation coefficient (R2 > 0:98), and the mean absolute percentage error (MAPE) was about 6%. The method was capable of estimating the total leaf area in a nondestructive, accurate and efficient manner, and it may be used for monitoring rice plant growth.
Agri-photonics image processing plant phenotyping regression model visible light imaging 
Journal of Innovative Optical Health Sciences
2015, 8(2): 1550002
梁秀英 1,2,*李小昱 1杨万能 1,2,3
作者单位
摘要
1 华中农业大学工学院, 湖北 武汉430070
2 华中农业大学农业生物信息湖北省重点实验室, 湖北 武汉 430070
3 华中农业大学作物遗传改良国家重点实验室, 湖北 武汉 430070
相对于传统生化测定方法,基于近红外光谱(Near infrared spectroscopy,NIRS)玉米籽粒蛋白质含量检测是一种快速、非破坏、且适用于多组分同时检测的新方法.但在建模过程中,由于奇异数据(异常值)的存在会影响近红外光谱模型的预测精度和稳定性,我们采用奇异数据筛选法剔除了玉米籽粒近红外光谱中的奇异数据并建立了玉米籽粒蛋白质含量的偏最小二乘支持向量机(Least squares support vector machine,LS-SVM)模型.本文分别采用杠杆值法(Leverage)、半数重采样法(Resampling by Half-Mean,RHM)和蒙特卡洛采样法(Monte-Carlo Sampling,MCS)剔除了玉米籽粒蛋白质光谱数据中的奇异数据并对模型结果进行比较.在剔除奇异数据的基础上,采用偏最小二乘回归法(Partial least squares regression,PLSR)提取主成分,并基于小生境蚁群算法(Niche ant colony algorithm,NACA)优化偏最小二乘支持向量机(LS-SVM)模型参数(γ和σ2),建立基于LS-SVM的玉米籽粒蛋白质定量分析模型.结果表明,采用3种奇异数据筛选法剔除奇异数据后所建LS-SVM模型的预测结果都优于采用原光谱数据所建模型,相比较而言,蒙特卡洛采样法为基于近红外光谱检测玉米籽粒蛋白质的最佳奇异数据筛选法.
玉米籽粒蛋白质 奇异数据筛选法 偏最小二乘支持向量机(LS-SVM) 小生境蚁群算法(NACA) protein content in maize kernel outlier screening methods the least squares support vector machine(LS-SVM) niche ant colony algorithm(NACA) 
激光生物学报
2015, 24(1): 38
作者单位
摘要
1 华中科技大学生命科学与技术学院生物医学光子学教育部重点实验室, 湖北 武汉 430074
2 华中农业大学作物遗传与改良国家重点实验室, 湖北 武汉 430070
3 华中农业大学农业部长江中游作物生理生态与耕作重点实验室, 湖北 武汉 430070
在单株水稻表型测量研究中,为了实现绿叶面积和茎叶相关表型参数的准确计算提供技术保障,茎叶的分割是非常重要的一步.传统的人工测量方法费时费力,且主观性较强,而基于普通相机拍摄的彩色图像进行分割效果很差.本研究介绍了一种使用可见光-近红外高光谱成像系统自动区分单株盆栽水稻茎叶的方法.首先将各波长下的图像从原始二进制数据中提取出来,接着使用主成分分析所有波长下的图像,并提取出主要的主成分图像,再基于数字图像处理技术将茎叶区分开.实验结果表明,本系统以及文中所用方法对分蘖盛期的水稻茎叶有很好的分割效果,这为后续水稻茎叶表型性状高通量、数字化、无损准确提取提供了重要的技术保障,并进一步促进植物表型组学的发展.
高光谱成像 图像分割 主成分分析 hyperspectral imaging image process principal component analysis 
激光生物学报
2015, 24(1): 31

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!